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Abstract. The integrability of N = (2, 2) dilaton supergravity in two dimensions is studied by the use of
the graded Poisson-Sigma model approach. Though important differences compared to the purely bosonic
models are found, the general analytic solutions are obtained. The latter include minimally gauged models
as well as an ungauged version. BPS solutions are an especially interesting subclass.

1 Introduction

Graded Poisson Sigma (gPSM) models [1–6] have proved
to represent a powerful formalism in the quest to solve
several longstanding problems in 2d (dilaton) supergrav-
ity [7, 8]. As shown in our first paper [9] on the subject
of N = (2, 2) supergravity [10–22] it is possible to formu-
late the full actions including all fermionic contributions
in a compact form. Although our version works with a
non-linear and open algebra, this turns out to be no dis-
advantage thanks to the powerful symmetry principles of
the gPSM. In this way the very complicated and lengthy
actions that follow from superspace at the component level
(cf. e.g. [15–18]) can be avoided. It turns out that the ex-
istence of the equivalent gPSM formulation is the key in-
gredient for the numerous successes of this method which
even extends to the quantization of such theories [23, 24].
On the other hand, there is an isomporphic mapping of
the symmetries as given by the superfield formulation for
N = (2, 2) onto the ones in the field content of gPSMs [9].

Our present paper is an immediate continuation of this
work by using another convenient feature of the gPSM
formalism, namely the possibility to derive the full clas-
sical solution, including the complete fermionic contribu-
tions. Though many aspects of the calculation are a rather
straightforward generalization of previous results, new im-
portant problems appear which are related to the question
of the existence of Casimir-Darboux coordinates on graded
Poisson manifolds.

In order to provide a sufficiently self-contained presen-
tation we again start (Sect. 2) with a condensed descrip-
tion of the gPSM, summarizing also the main results of [9]

as needed for the application to N = (2, 2) supergravity
in the present work. Section 3 contains the solution for
the chiral version of N = (2, 2) dilaton supergravity. It
is enough to consider the case which corresponds to van-
ishing kinetic term of the dilaton field in the version for-
mulated as a dilaton theory, because the general case can
be obtained by straightforward conformal transformation
(Sect. 4). The twisted chiral case is covered as well by
a simple “mirror-type” redefinition of fields. Section 5 is
devoted to a formulation of ungauged N = (2, 2) super-
gravity which consists in restricting the previous theory
to a fixed leaf of one of the Casimir functions in a gauge
theory. A short discussion of BPS solutions is the sub-
ject of Sect. 6, where we show that (even in the so much
simpler gPSM approach) the complications for N = (2, 2)
as compared to N = (1, 1) supergravity [25] at present
allow a consideration of the bosonic part only. After the
conclusion (Sect. 7) we decided to include as in [9] again
the Appendix describing the notation somewhat more in
detail.

2 gPSM for N = (2, 2) supergravity

In this section some relevant formulae of (graded) Poisson-
Sigma models and their application in dilaton supergrav-
ity are reviewed. For further details [9] and earlier liter-
ature on the topic, esp. [4, 6, 26, 27] should be consulted.
A general gPSM consists of scalar fields XI(x), which are
themselves coordinates of a graded Poisson manifold with
Poisson tensor P IJ(X) = (−1)IJ+1P JI(X). The index I,
in the generic case, includes commuting as well as anti-
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commuting fields1. In addition one introduces the gauge
potential A = dXIAI = dXIAmI(x) dxm, a one form
with respect to the Poisson structure as well as with re-
spect to the 2d worldsheet coordinates. The gPSM action
reads2

SgPSM =
∫

M

dXI ∧AI +
1
2
P IJAJ ∧AI . (1)

The Poisson tensor P IJ must have vanishing Nijenhuis
tensor (obey a Jacobi-type identity with respect to the
Schouten bracket related as {XI , XJ} = P IJ to the Pois-
son tensor)

JIJK = P IL∂LP
JK + g-perm (IJK) = 0 , (2)

where the sum runs over the graded permutations. The
variation of AI and XI in (1) yields the gPSM equations
of motion (eom-s)

dXI + P IJAJ = 0 , (3)

dAI +
1
2
(
∂IP

JK
)
AKAJ = 0 . (4)

Due to (2) the action (1) is invariant under the symmetry
transformations

δXI = P IJεJ , δAI = −dεI − (∂IP
JK
)
εK AJ , (5)

where the term d εI in the second of these equations pro-
vides the justification for calling AI “gauge fields”.

If the Poisson tensor has a non-vanishing kernel there
exist (one or more) Casimir functions C(X) obeying

{XI , C} = P IJ ∂C

∂XJ
= 0 , (6)

which, when the XI obey the field equations of motion,
are constants of motion.

It was shown in [9] that minimally gauged N = (2, 2)
dilaton supergravity can be described by a gPSM if the
target space has four (real) commuting dimensions, inter-
preted as a complex dilaton X = φ + iπ and an auxil-
iary field Xa, and four anti-commuting ones, which are
combined in a complex two-component dilatino χα. The
associated gauge fields are the spin-connection ω, the
“zweibein” ea and the complex gravitino ψα. For a gauged
U(1) symmetry of χα another U(1) gauge field B must be
introduced. General dilaton supergravity models are com-
pletely determined by twoX-dependent functions, namely
a prepotential u(X, X̄) and the conformal factor Q(X).
The derivative of the latter is denoted as Q′(X) = Z(X)
and defines the contributions quadratic in bosonic torsion.
Furthermore it is useful to introduce the potentials w and

1 The usage of different indices as well as other features of our
notation are explained in Appendix Appendix A:. For further
details one should consult [4, 28].

2 If the multiplication of forms is evident in what follows, the
wedge symbol will be omitted.

W , which control the bosonic and fermionic parts, respec-
tively:

w(X) =
1
4
eQ̄/2u W (X, X̄) = −2ww̄ (7)

With these definitions general chiral dilaton supergravity
is described by the Poisson tensor [9]

P aφ = Xbεb
a , Pπφ = 0 , (8)

Pαφ = −1
2
χβγ∗β

α , P ᾱφ = −1
2
χ̄βγ∗β

α . (9)

P aπ = 0, Pαπ = − i

2
χβγ∗β

α , P ᾱπ =
i

2
χ̄βγ∗β

α .

(10)

P ab = εab
(
e−(Q+Q̄)/2W ′ +

1
2
Y (Z + Z̄)

+
1
4
χ2e−Q/2w̄′′ +

1
4
χ̄2e−Q̄/2w′′

)
,

(11)

P aα = ie−Q̄/2w′(χ̄γa)α − Z̄

4
Xb(χγbγ

aγ∗)α , (12)

P aᾱ = ie−Q/2w̄′(χγa)α − Z

4
Xb(χ̄γbγ

aγ∗)α , (13)

Pαβ̄ = −2iXa(γa)αβ , (14)

Pαβ =
(
u+

Z̄

4
χ2
)
γ∗αβ , P ᾱβ̄ =

(
ū+

Z

4
χ̄2
)
γ∗αβ .

(15)

The bosonic part of the Poisson tensor has four dimensions
but at most rank two. Therefore there exist at least two
(real) commuting Casimir functions, which can be chosen
as

C = 8
(
W + e(Q+Q̄)/2(Y

+
1
4
χ2e−Q/2w̄′ +

1
4
χ̄2e−Q̄/2w′)

)
,

(16)

Cπ = π + ieQ̄/2 w̄

C
χ2 − ieQ/2w

C
χ̄2

− e(Q+Q̄)/2

C
Xa(χγaγ∗χ̄) .

(17)

The first one is related to the energy3 the second to the
U(1) charge of the system.

An important simplified model is dilaton prepotential
supergravity [4] obtained for the special case Z = 0 (cf.
Sect. 3 of [9]). General supergravity models can be ob-
tained from the latter by means of conformal transfor-
mations, which are interpreted as target-space diffeomor-
phisms. Therefore, for any local analysis it is sufficient as
a first step to consider this simpler class of models. Nev-
ertheless, the conformal transformations towards Z �= 0

3 This energy conservation is a pecular feature of 2d (super-)
gravity, even in the presence of matter [25,29,30].
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need not be defined globally and thus the latter models
tend to be physically inequivalent.

Finally we note that under the exchange χ− ↔ χ̄− and
ψ− ↔ ψ̄− a chiral gauging of the internal U(1) turns into a
twisted chiral one. This map represents mirror symmetry;
it is defined globally and thus physics do not change, as is
expected for the geometric part of the action.

3 Solution of dilaton prepotential SUGRA

The aim of this work is to study the integrability of
N = (2, 2) dilaton supergravity and to derive its analytic
solution. As announced above the explicit calculations can
be restricted to the chiral version of dilaton prepotential
supergravity, the general theories are then obtained by
means of conformal transformations. Although we find
agreement with the general statements about (g)PSMs
that the models developed in this work are integrable,
important differences between graded PSMs and ordinary
(bosonic) PSMs become manifest here.

3.1 gPSM and Casimir-Darboux coordinates

The integrability of bosonic dilaton gravity may be
checked by explicit integration of the equations of mo-
tion [29]. However, once the theory is formulated in terms
of a PSM this characteristic is guaranteed by the fact
that any Poisson manifold locally can be transformed to
Casimir-Darboux (CD) coordinates4. As the integrability
of the model at hand is not obvious in their “physical”
coordinates, it is helpful to choose new coordinates that
are CD or at least almost CD.

In the following we assume that X++ �= 0. Then for
the purely bosonic theory one can choose the Casimir-
Darboux coordinates {C, π, φ, λ} with λ = − ln |X++|.
The only non-vanishing bracket among these variables is
{λ, φ} = 1. As π does not commute with the fermions,
this choice does not lead to CD coordinates for the full
theory, but they would be {C,Cπ, φ, λ} plus some conve-
nient choice for the fermions. However the former choice
turns out to be the preferrable one: First, the replacement
π → Cπ leads to lengthy equations (cf. Sect. 7 of [9]) and
second, solutions for CB = 0 cannot be obtained in this
way, as Cπ contains inverse powers in this function.

Among the fermionic coordinates we follow the idea
of [4] to choose the Lorentz invariant quantities5

4 Such coordinates exist on regular sheets of the Poisson
manifold, only. Solutions on irregular sheets have to be con-
sidered seperately [31, 32]. In the bosonic model these are re-
stricted to the point X++ = X−− = 0. Such solutions describe
constant dilaton vacua or a bifurcation point. Some solutions
of this type are discussed in Sect. 6.

5 Throughout Sect. 3 variables like χ± etc. refer to the re-
stricted case Z = 0. In the transition to Z �= 0 in Sect. 4 we
shall rename the variables of Sect. 2 by underlining them.

χ̃(+) =
1√|X++|χ

+ , χ̂(−) =
√

|X++|χ− − iσu

2
√

2
˜̄χ(+) ,

(18)

as new coordinates (σ denotes the sign6 of iX++). Their
hermitian conjugates follow from the rules below (A.9) in
the Appendix. The second term in the definition of χ̂(−)

is motivated by the bracket

{λ,
√

|X++|χ−} = {λ, χ̃(−)} =
iσ

2
√

2
u′ ˜̄χ(+) . (19)

It is now straightforward to check that the Poisson
brackets—beside the purely bosonic ones already men-
tioned above—reduce to

{π, χ̃(+)} =
i

2
χ̃(+) , {π, ˜̄χ(+)} = − i

2
˜̄χ(+) ,

(20)

{π, χ̂(−)} = − i

2
χ̂(−) , {π, ˆ̄χ(−)} =

i

2
ˆ̄χ(−) , (21)

{χ̃(+), ˜̄χ(+)} = −2
√

2iσ , {χ̂(−), ˆ̄χ(−)} = − iσ

2
√

2
C ,

(22)

while all remaining brackets are zero. All details of
the model are hidden in the redefinition of the fields,
and the equations of motion for the new variables
become independent of the prepotential u. To distin-
guish the set of transformed gauge potentials from
the original ones they all are denoted with a tilde
(ÃC , Ãπ, Ãλ, Ãφ, Ã(+),

˜̄A(+), Ã(−),
˜̄A(−)). Also, the action

(1) is expressed in terms of the transformed Poisson tensor
related to the brackets (20)-(22) and {λ, φ} = 1. Variation
of the action with respect to these ÃI yields the eom-s

dC = 0 , (23)

dπ +
i

2
(χ̃(+)Ã(+) − ˜̄χ(+) ˜̄A(+)

− χ̂(−)Ã(−) + ˆ̄χ(−) ˜̄A(−)) = 0 ,
(24)

dφ− Ãλ = 0 , dλ+ Ãφ = 0 , (25)

d χ̃(+) + 2
√

2iσ ˜̄A(+) − i

2
χ̃(+)Ãπ = 0 , (26)

d χ̂(−) − iσ

2
√

2
C ˜̄A(−) +

i

2
χ̂(−)Ãπ = 0 , (27)

while variation with respect to XI produces

d ÃC − iσ

2
√

2
Ã(−) ∧ ˜̄A(−) = 0 , (28)

6 According to the conventions outlined in the Appendix,
quantities like X±± are imaginary (cf. (A.12) and (A.13)).
In [4, 6] a real value for X++ has been assumed, which cor-
responded to a slightly different convention.
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d Ãπ = 0 , d Ãφ = 0 d Ãλ = 0 , (29)

d Ã(+) +
i

2
Ã(+) ∧ Ãπ = 0 , (30)

d Ã(−) − i

2
Ã(−) ∧ Ãπ = 0 . (31)

It is obvious from the definition of Cπ in (17) and the sec-
ond equation in (22) that complications arise if the body
of the Casimir function C vanishes. A similar problem
already appears in N = (1, 1) supergravity [4] and—as a
concise discussion of this point has not been given so far—
this simpler model is considered first. As is easily seen
from the above result by reducing configuration space to
the one of N = (1, 1), CD coordinates are obtained after
simple rescalings by negative powers of

√
C except for the

bracket in (22) (cf. Sect. 8 in [4], unimportant constants
and factors of i are omitted)

{χ̂(−), χ̂(−)} = C (32)

and the respective eom-s

d χ̂(−) − CÃ(−) = 0 , d Ã(−) = 0 . (33)

Clearly (33) can be integrated for any value of C = const.
Ã(−) is closed and thus locally Ã(−) = d ζ(−). For constant
C the simple equation χ̂(−) = Cζ(−) + χ̂

(−)
0 is obtained

with arbitrary ζ(−) and a constant χ̂(−)
0 . Nevertheless one

has to distinguish three different cases:
1. C = 0. In that case the first equation in (33) de-

fines χ̂(−) as a second anti-commuting Casimir func-
tion χ̂(−)

0 [4], Ã(−) is the associated gauge potential.
2. C �= 0. This case is divided into two sub-classes:

(a) Non-vanishing body of C. Then after a rescaling of
χ̂− by 1/

√
C in (32) CD coordinates are obtained

with C being the only Casimir function. Obviously
the solution for Ã(−) can be expressed in terms of
χ̂(−).

(b) Vanishing body of C. This is a subtle case having
no counterpart in the purely bosonic model. On the
one hand, χ̂(−) is not a Casimir function as for C =
0, but on the other hand a division by C is excluded
as C−1 does not exist. Therefore it is impossible
to transform the system to CD coordinates and to
express the solution for Ã(−) in terms of the target-
space coordinates. From the first equation in (19)
it even seems that the solution for χ̂(−) depends on
ζ(−). For the special case at hand it can be argued
on general grounds that this is not the case [25]: As
the solutions are parametrized by only two anti-
commuting variables, CÃ(−) must vanish if C is
pure soul. It is important to notice that this is a
fortunate accident in this case.

3.2 Integration for generic Casimir function

We now show that a general solution can be obtained with
the only restriction X++ �= 0 (or equivalently X−− �= 0.)

The solutions of (25) and (29) are immediate with Ãλ =
dφ, Ãφ = − dλ and Ãπ = − dFπ, where Fπ is a free func-
tion. If C has non-vanishing body we could solve all four
equations in (26)-(27) for the fermionic gauge potentials.
Nevertheless we want to proceed in a different way, be-
cause solutions with C = 0 or C = pure soul do appear
in this model and in particular represent the interesting
class of BPS states (cf. [25] and Sect. 6 below). From (26)
we obtain

Ã(+) =
iσ

2
√

2
d ˜̄χ(+) +

σ

4
√

2
˜̄χ(+) dFπ . (34)

For the remaining fermionic variables equation (31) must
be addressed first. It implies

Ã(−) = d ζ(−) +
i

2
ζ(−) dFπ (35)

for some complex anti-commuting function ζ(−). Now the
hermitian conjugate of this solution is inserted into the
equation (27) that yields after integration

χ̂(−) =
iσ

2
√

2
Cζ̄(−) + e

i
2 Fπλ

(−)
0 . (36)

In this solution λ(−)
0 is a constant spinor. Among the vari-

ations with respect to ÃI there remains (24), which should
produce by dCπ = 0 the constant of motion. When (34),
(36) and their hermitian conjugates are inserted into that
equation indeed a total derivative is obtained. Its integra-
tion with some integration constant C0

π yields7

Cπ = π − σ

4
√

2
χ̃(+) ˜̄χ(+) − σ

4
√

2
Cζ(−)ζ̄(−)

− i

2
(e

i
2 Fπλ

(−)
0 ζ(−) − e− i

2 Fπ λ̄
(−)
0 ζ̄(−)) + C0

π .

(37)

It remains to find the explicit form of ÃC from (28) and
(35). This gauge potential depends on an additional free
function dF and after a straightforward integration can
be written as

ÃC = − dF +
iσ

4
√

2

(
iζ(−)ζ̄(−) dFπ

− (ζ(−) d ζ̄(−) + ζ̄(−) d ζ(−))
)
.

(38)

Before proceeding to the discussion of specific classes
of solutions we should worry about the transformations
back to the original “physical” coordinates. The one of
the gauge potentials follows straightforwardly by applying
target space diffeomorphisms: AI = ∂X̃J/∂XIÃJ . The
X̃I comprise the CD coordinates of the bosonic sector
as defined in the second paragraph of Sect. 3.1 together
with the fermionic components (18) and their hermitian
conjugates. The explicit result reads:

ω =
dX++

X++ +
(−(ūu)′ + χ−χ+ū′′ + χ̄−χ̄+u′′)ÃC

− iσu′

2
√

2
˜̄χ(+)Ã(−) − iσū′

2
√

2
χ̃(+) ˜̄A(−)

(39)

7 Anticipating the result of Sect. 3.3 the constant C0
π cannot

be set to zero in order to match the prescription in (17).
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B = − dFπ − i
(
(u′ū− uū′) + χ−χ+ū′′ − χ̄−χ̄+u′′)ÃC

+
σu′

2
√

2
˜̄χ(+)Ã(−) − σū′

2
√

2
χ̃(+) ˜̄A(−)

(40)

e++ = − dφ
X++ + 8X−−ÃC

− 1
2X++

(
χ̃(+)Ã(+) + ˜̄χ(+) ˜̄A(+)

− (χ̃(−) +
iσu

2
√

2
˜̄χ(+))Ã(−)

− ( ˜̄χ(−) +
iσū

2
√

2
χ̃(+)) ˜̄A(−)

)
(41)

e−− = 8X++ÃC (42)

ψ+ =
1√|X++|

(
Ã(+) − iσū

2
√

2
˜̄A(−)

)− ū′χ−ÃC (43)

ψ̄+ =
1√|X++|

( ˜̄A(+) − iσu

2
√

2
Ã(−)

)− u′χ̄−ÃC (44)

ψ− =
√

|X++|Ã(−) + ū′χ+ÃC (45)

ψ̄− =
√

|X++| ˜̄A(−) + u′χ̄+ÃC (46)

The dependence on a specific model is determined by the
prepotential u(φ) alone.

The similarity of this solution to the one of bosonic
gravity [27] as well as of N = (1, 1) supergravity [4, 6] is
immediate. In the following we want to discuss more in
detail the solution of dilaton prepotential supergravity for
different values of the Casimir function C. The solution of
the general supergravity model (7)-(17) with Z �= 0 then
simply follows by applying certain target space diffeomor-
phisms onto these solutions.

3.3 Non-vanishing body of the Casimir C

The simplest solution is obtained on a patch with non-
vanishing body of the Casimir function, as in that case
C−1 is well defined. Then also the definition of the second
Casimir (17), taken at Q = 0, makes sense. Thus we can
solve still (36) for ζ̄(−):

ζ̄(−) = −2
√

2iσ
C

(χ̂(−) − e
i
2 Fπλ

(−)
0 ) (47)

It is seen that the λ(−)
0 part drops out of the solution for

˜̄A(−):

˜̄A(−) = −2
√

2iσ
C

(d χ̂(−) − i

2
χ̂(−) dFπ) (48)

Of course, one could proceed by integrating again (24)
and (28) with these formulas. Instead we insert (47) and
its hermitian conjugate into the expressions (37) and (38)

which leads to

Cπ = π − σ

4
√

2
χ̃(+) ˜̄χ(+)

−
√

2σ
C

(χ̂(−) ˆ̄χ(−) − λ
(−)
0 λ̄

(−)
0 ) ,

(49)

ÃC = − d
(
F +

√
2iσ
C2 (e

i
2 Fπλ

(−)
0 ˆ̄χ(−) + e− i

2 Fπ λ̄
(−)
0 χ̂(−))

)
−

√
2σ
C2

(
χ̂(−) ˆ̄χ(−) dFπ

+i( ˆ̄χ(−) d χ̂(−) + χ̂(−) d ˆ̄χ(−))
)
. (50)

Starting instead with the definitions (48) one obtains the
same result up to the terms dependent on λ(−)

0 , which are
clearly absent in that case. However, in (49) the last term
simply produces the constant C0

π in (37). In (50) the terms
∝ λ

(−)
0 can be absorbed by a redefinition of F .
To summarize: this solution is parametrized by the two

Casimir functions according to (16) and (17), by the as-
sociated “gauge potentials” dF and dFπ as well as by
the target space variables φ, λ, χ̃(+), ˜̄χ(+), χ̂(−) and ˆ̄χ(−).
In the general solution the spinorial gauge potentials are
determined by (34) and (48), ÃC is given by (50) and
π inside the prepotential must be expressed by Cπ and
spinorial terms according to (49).

3.4 Vanishing Casimir C

The other extreme is the case C ≡ 0. Then the definition of
χ̂(−) decouples completely from ζ̄(−). This implies that the
latter spinors cannot be expressed in terms of the target
space variables, the typical situation one encounters if the
target space coordinate is a Casimir function of the Pois-
son manifold. Indeed, as shown in Sect. (3.1) a fermionic
Casimir function occurs for C = 0 in the N = (1, 1)
case [4], which may simply be identified with χ̂(−). At
least in that limit this result should be reproduced here.
Nevertheless it is obvious from (36) that d χ̂(−) �= 0 irre-
spective of the value of C. The new constant of motion
coincides with the (for C �= 0 irrelevant) constant λ(−)

0 :

dλ(−)
0 = d(e− i

2 Fπ χ̂(−)) = 0 (51)

On the one hand, this result has the expected property
to reduce to the one found in N = (1, 1) in the limit
where the target space is reduced to this theory. On the
other hand, the constant of motion cannot be expressed
completely in terms of the target space variables because
Fπ is related to a gauge field. This pecularity appears in
the definition of the “second Casimir” Cπ as well. Indeed
for C = 0 the definition (17) is ill defined as there appear
inverse powers of C. Of course the combination C · Cπ is
a well defined Casimir, but in the limit C → 0 it makes
no sense as C and C · Cπ are no longer independent. The
correct solution is found by looking at the equations of
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motion including the gauge fields: Indeed they could be
integrated in full generality in (37); for C = 0 we find

Cπ = π − σ

4
√

2
χ̃(+) ˜̄χ(+)

− i

2
(e

i
2 Fπλ

(−)
0 ζ(−) − e− i

2 Fπ λ̄
(−)
0 ζ̄(−)) .

(52)

It should be noted that the last term depends on Fπ and
ζ(−), i.e. quantities that are not part of the target space.
All remaining gauge potentials follow straightforwardly
from the result obtained already above.

Obviously, all problems of finding CD coordinates for
C = 0 are intimately connected with the divergences at
C = 0 that show up in Cπ. As we work throughout with
an explicit basis on the Poisson manifold we should ask
whether the characteristics of our solution are generic or
a pecularity of our choice of coordinates. By analyzing
this the meaning of the (non-)existence of CD coordinates
should become more transparent.

The first question concerns the existence of a Casimir
function. Indeed, a very simple solution for the elimination
of the divergences at C → 0 in (17) could be that then a
second (commuting) Casimir exists for vanishing fermions
only. However, the analysis of this section showed that
there exist for all solutions at least two commuting con-
stants of motion, one related to C the other one related
to Cπ. Therefore it remains to check, whether new coordi-
nates can be chosen in such a way that the Casimir func-
tion Cπ remains regular. The problem can be considered
in two different versions:

1. One can ask whether such coordinates exist in an en-
tire neighborhood of C = 0. As such a region includes
points where C �= 0 has non-vanishing body, one can
reduce this to the question whether there exist coordi-
nates such that Cπ remains regular in the limit C = 0.
Indeed, such coordinates can be defined for a restricted
range of the fermionic fields. This is most easily seen
from (49), where by the rescaling

χ̂(−) =
√
Cχ̌(−) , ˆ̄χ(−) =

√
C ˇ̄χ(−) (53)

all divergences from Cπ disappear. However from the
definition of χ̂ in (18) it is seen that this implies in the
limit of C → 0

χ− =
1

2
√

2
u

X++ χ̄
+ , χ̄− =

1
2
√

2
ū

X++χ
+ . (54)

Clearly, the general solution from (36) with indepen-
den χ(−) and χ(+) need not respect this constraint for
C = 0.

2. A weaker requirement would be to find regular coor-
dinates that are valid on the sheet C = 0 only. Here
a similar problem as in the example of Sect. 3.1 is
encountered. Clearly, the system in (20)-(22) cannot
be transformed to CD coordinates as the inverse of a
spinorial quantity is not defined (remember that the
remaining coordinates are already CD).

There is yet another way to illustrate the difference
with respect to the solutions with C �= 0: The solution
with C = 0 is parametrized by C = 0, dF , Cπ, Fπ, φ, λ,
χ̃(+), ˜̄χ(+), λ(−)

0 , λ̄(−)
0 , ζ(−), ζ̄(−). Counting the degrees of

freedom it is seen that this configuration space is by one
real bosonic and one complex fermionic constant larger
than the one found for C �= 0, namely by the integration
constant of Fπ and one constant from ζ(−) and λ(−)

0 . Both
of them appear in (49) and (50) but it was seen there that
physics do not depend on the value of these constants, but
they can be absorbed by simple redefinitions of other free
variables. In the present case the situation is different as
λ

(−)
0 determines the value of χ̂(−) and e.g. labels states

with different soul contributions to the charge Cπ. To re-
duce the configuration space of the solution at C = 0 to
the one of C �= 0 in the present setup one has to choose
λ

(−)
0 = 0. Comparison with (36) for C = 0 shows that this

condition is exactly (54). The remaining constant from
Fπ automatically disappears once this constraint is im-
posed. We have argued above that λ(−)

0 replaces the anti-
commuting Casimir function that was found in N = (1, 1)
supergravity at C = 0. Remarkably enough we now find,
that the reduction of the configuration space implies that
this constant of motion vanishes.

In summary the solutions for C = 0 can be divided
into two classes: The first class consists of solutions that
exist in an entire neighborhood of C = 0 and consequently
the configuration space has the same dimension as the one
for C �= 0. However, there exist additional solutions that
appear due to the integration constants of Fπ and λ

(−)
0 .

These solutions cannot be extended to the case C �= 0
with non-vanishing body.

3.5 Pure soul Casimir

This case lies in-between the cases 3.3 and 3.4. As (36) for
non-invertible C �= 0 cannot be solved for ζ(−) the gauge
potential Ã(−) cannot be expressed in terms of the target-
space variables. Therefore, the solution is parametrized by
the same quantities as in the case C = 0. The discussion
of the two classes of solutions still applies and again the
class of solutions with λ(−)

0 = 0 can be obtained smoothly
from solutions with non-vanishing body of C. Nevertheless
it is important to notice that this does no longer imply
the constraint (54), as χ̂(−) is at least partially defined
through ζ̄(−).

4 Solution for general models

Our main task is to solve N = (2, 2) supergravity with
Z �= 0, i.e. the models described in Sect. 2. Their solu-
tions can be obtained by applying conformal transforma-
tions interpreted as target space diffeomorphisms to the
solutions at Z = 0 of the previous Section. In the present
section the variables of the general model of Sect. 2 now
are underlined (cf. footnote 7). According to the formulas
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of Sect. 4 in [9] with Z = Q′ the new gauge potentials
become

ω = ω +
1
4
(
(Z + Z̄)Xbeb + Z̄χψ + Zχ̄ψ̄

)
, (55)

B = B − i

4
(Z̄χψ − Zχ̄ψ̄) , (56)

ea = e(Q+Q̄)/4ea , ψ
α

= eQ̄/4ψα , ψ̄
α

= eQ/4ψ̄α ,

(57)

with the conformal factor Q being an analytic function in
X = φ + iπ. The general solution is obtained by taking
these linear combinations of the solution of the simpli-
fied model in (39)-(46). At the same time the target space
variables that parametrize these solutions must be trans-
formed according to

X = X , Xa = e−(Q+Q̄)/4Xa , (58)

χα = e−Q̄/4χα , χ̄α = e−Q/4χ̄α . (59)

The prepotential transforms as u = eQ̄/2u. The definition
of the free functions dF , Fπ, λ(−)

0 and ζ(−) remain un-
changed, but the relations (34)-(36) must be adjusted due
to (58) and (59). The constant of motion in (37) changes in
such a way that it coincides with (17) in the case of C �= 0
with non-vanishing body. The latter Casimir function is
given by (16).

The main characteristics of the three classes of solu-
tions as discussed in Sects. 3.3, 3.4 and 3.5 remain un-
changed. For C �= 0 with non-vanishing body (36) can be
solved for χ̂(−). For C = 0 now

λ
(−)
0 = e− i

2 Fπ+ 1
4 Q̄

(
e

1
4 (Q+Q̄)χ̃(−) − iσū

2
√

2
˜̄χ(+)

)
(60)

is the anti-commuting constant of motion.
Finally it should be mentioned that all the models con-

sidered so far were related to chiral gauging. Twisted chi-
ral gaugings are obtained [9] by the change of variables
χ− ↔ χ̄− and ψ− ↔ ψ̄−. As this redefinition is defined
globally, the discussion of the twisted chiral case is com-
pletely analogous to the one of chiral gauging.

5 Ungauged supergravity

Beside the two versions of minimally gauged N = (2, 2)
supergravity discussed so far ungauged versions have
been found in the context of superstring compactifica-
tions [20–22]. It was shown by us in [9] that such models
can be obtained from the Poisson tensor (8)-(15) by de-
coupling the scalar field π and its associated gauge field
B. This is done by a change of variables; instead of π
the Casimir function Cπ is used as a new target space
coordinate. Then, as {Cπ, X

I} ≡ 0 for all fields XI , the
corresponding part of the Poisson tensor can be dropped

and u(X, X̄) and Q(X) become functions of the dilaton
and the dilatinos8.

Again we restrict the explicit calculations to dilaton
prepotential supergravity Z = 0. As π appears in the pre-
potential u(φ+ iπ) and ū(φ− iπ) the relevant replacement
is

u(φ+ iπ) = û+
1

4CB
û′ (ˆ̄uχ2 − ûχ̄2 + 4iXa(χγaγ∗χ̄)

)

+
1

16CB
χ2χ̄2

(
û′′ +

1
CB

(ûˆ̄u′ − û′ ˆ̄u)
)

(61)

and its hermitian conjugate. Here û(φ+ iCπ) is the prepo-
tential after the replacement π → Cπ and CB = 8Y − ûˆ̄u
is the body of the Casimir function C with respect to the
ungauged model.

To determine the solution of the ungauged model we
could start from the explicit expansion of the prepoten-
tial in terms of the Casimir Cπ in (61). Then we could
determine the solution in terms of the new coordinates

X̌I = (C,Cπ, φ, λ, χ̃
(+), ˜̄χ(+), χ̂(−), ˆ̄χ(−)) . (62)

This should reproduce the solution of Sect. 3.3 and, af-
ter dropping the Casimir Cπ, lead to the solution for the
ungauged model as well. However, the calculation of the
corresponding brackets is very complicated as one has to
expand the prepotential in the second equation of (18) as
well.

Fortunately, there exists a simple trick to obtain the
solution in a straightforward way. We can view the replace-
ment π → Cπ as a target space diffeomorphism and simply
apply the ensuing transformation rules of the gauge fields
to the solution obtained in Sect. 3.2. From the expansion
of Cπ in terms of the variables X̃I (cf. the paragraph below
(39))

Cπ = π − σ

4
√

2
χ̃(+) ˜̄χ(+) −

√
2σ
C

χ̂(−) ˆ̄χ(−) (63)

and the solution of Sect. 3.3 one finds

ǍCπ
= Ãπ = − dFπ , Ǎλ = dφ , Ǎφ = − dλ , (64)

ǍC = ÃC +
√

2σ
C2 χ̂(−) ˆ̄χ(−) dFπ

= − dF +
√

2iσ
C2 ( ˆ̄χ(−) d χ̂(−) + χ̂(−) d ˆ̄χ(−)) ,

(65)

Ǎ(+) = Ã(+) − σ

4
√

2
˜̄χ(+) dFπ =

iσ

2
√

2
d ˜̄χ(+) , (66)

ˇ̄A(+) = ˜̄A(+) +
σ

4
√

2
χ̃(+) dFπ =

iσ

2
√

2
d χ̃(+) , (67)

8 In a more mathematical language, a fixed symplectic leaf
with respect to the foliation by Cπ is chosen. Thus the un-
gauged model has a smaller configuration space than the
gauged model, which includes all symplectic leaves.
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Ǎ(−) = Ã(−) −
√

2σ
C

ˆ̄χ(−) dFπ = i
2
√

2iσ
C

d ˆ̄χ(−) , (68)

ˇ̄A(−) = ˜̄A(−) +
√

2σ
C

χ̂(−) dFπ = −2
√

2iσ
C

d χ̂(−) . (69)

As expected dFπ does no longer appear in the trans-
formed expressions—except in the first equation of (64)
of course—and thus Cπ may be eliminated consistently.

To transform this solution to the defining coordinates
of the ungauged model the prepotential in the second
equation of (18) must be replaced by the expansion (61):

χ̂(−) = χ̃(−) − iσû

2
√

2
˜̄χ(+) − iσ

4
√

2CB

û′ ˆ̄uχ̃(−)χ̃(+) ˜̄χ(+)

+
1

2CB
û′χ̃(−) ˜̄χ(−) ˜̄χ(+) (70)

Now the original gauge fields of the ungauged models can
be obtained by the transformation rules of the target space
diffeomorphisms. Notice that CB is a function of Y and φ,
derivatives must be taken with respect to these variables
as well. Also, the Lorentz invariant combinations for the
spinors must be expressed again in terms of the original
fields.

It was pointed out already in [9] that the ungauged
model allows for a restricted class of solutions with C = 0
only. This can be made more explicit at this point: The so-
lutions of the ungauged model correspond to those of the
gauged one where Cπ can be expressed in terms of target-
space coordinates alone (cf. the discussion in Sect. 3.4).
But it was found in the previous section that these are
exactly the solutions with λ(−)

0 = 0. Therefore for the un-
gauged model the configuration space at C = 0 is the same
as for C �= 0, the additional solutions found in the min-
imally gauged model disappear. The ensuing restriction
can be made manifest from (70). For C = 0 one obtains
the condition χ̂(−) = 0, for C pure soul this variable is
related to the Casimir by (36). Though these relations
have the same origin as in the minimally gauged model it
should be realized that the solution in terms of the phys-
ical coordinates are different, as the prepotential must be
expanded in terms of Cπ in the present case.

6 BPS solutions

Solutions that preserve some of the supersymmetries play
an important rôle in many different aspects of supergrav-
ity theories. In [25] it was shown for N = (1, 1) that the
gPSM approach to dilaton supergravity is very powerful
in the discussion of BPS states as well. In this section we
present first steps of an extension to minimally gauged
N = (2, 2) supergravity. Beside technical complications
the main difference is the appearance of new bosonic fields
and of an additional bosonic Casimir function.

In contrast to [25] our present discussion is restricted
to bosonic field configurations only. Such a configuration
is BPS if the supersymmetry variations of the fermionic

variables vanish. From (5) these transformations in this
simplified case are:

δχ+ = −2
√

2X++ε̄+ − uε− (71)

δχ− = −2
√

2X−−ε̄− − uε+ (72)

δψ+ = −Dε+ +
√

2e−Q/2w̄′ε̄−e++ +
Z̄

2
X−−e−−ε+

(73)

δψ− = −Dε− −
√

2e−Q/2w̄′ε̄+e−− − Z̄

2
X++e++ε−

(74)

6.1 Full supersymmetry

States that respect all supersymmetries must have Xa =
0. Furthermore the complex dilaton X = φ + iπ
must be chosen such that u(XBPS, X̄BPS) = 0 and
u′(XBPS, X̄BPS) = 0. Solutions of this type are invariant
under all supersymmetries if the transformations param-
eters are covariantly constant. The Casimir function C in
(16) vanishes for this solution. The requirement that the
fully supersymmetric state is a ground state fixes the addi-
tive ambiguity in the definition (16). The Casimir related
to the U(1) is not restricted to a specific value. Its possible
values depend on the details of the prepotential and are
determined by the condition u = u′ = 0.

The eom of the complex dilaton reduces to dX = 0
and therefore the solutions belong to the special class of
“constant dilaton vacua” CDV [25, 33]. As u′ = 0 the
eom of the spin connection reduces to dω = 0 and thus
curvature vanishes.

6.2 BPS states

In many applications the interesting field configurations
are restricted to vanishing fermion fields. Eqs. (71) and
(72) imply

uε− = −2
√

2X++ε̄+ , uε+ = −2
√

2X−−ε̄− . (75)

Iteration of these equations (and their hermitian conju-
gates) imply that C = 0. This is equivalent to the state-
ment that the determinant of the purely fermionic part of
the Poisson tensor must vanish. There exist three different
types of solutions.

6.2.1 CDV solutions

If X++ = X−− = 0 the complex dilaton X is again con-
stant and the prepotential vanishes on the solution. How-
ever u′ �= 0, else the fully supersymmetric solution would
be recovered. from the eom for the spin connection one
deduces

R = 2 ∗ dω =
1
2
u′ū′ > 0 , (76)
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which in our conventions implies AdS space. The solutions
do not respect full supersymmetry as from (73) and (74)

Dε+ − 1
2
√

2
ū′e++ε̄− = 0 , Dε− +

1
2
√

2
ū′e−−ε̄+ = 0 .

(77)

6.2.2 Chiral solutions

Even with the choiceX++ �= 0 it may happen thatX−− =
u = 0. In that case ε+ = 0 and only the ε− component can
be non-zero. As for all solutions with vanishing fermions
dπ = 0, but now dφ �= 0. Together with the condition u =
0 on the solution this however implies u ≡ 0. Therefore all
chiral solutions are flat Minkowski space. AsX++ �= 0 this
case is covered by the discussion of Sect. 4. Integration of
(74) yields

ε− = exp
[
1
2
(Q̄− iFπ)

]√
|X++|ε̃ (78)

with a constant spinor ε̃. All states of this type respect
two of the four supersymmetries.

6.2.3 Supersymmtric black holes

Obviously the cases 6.2.1 and 6.2.2 do not describe super-
symmetric black hole solutions. The latter only exist if all
three quantities X++, X−− and u are different from zero.
Then from (75) it follows that both components ε+ and
ε− must be nonvanishing. It remains to check the differ-
ential equations (73) and (74). By the use of the explicit
solution derived in the previous Sections it can be shown
that (74) is the hermitian conjugate of (73). Thus it re-
mains to solve a single differential equation that can be
written as

d ε− = d
(

1
2

lnX++ − i

2
Fπ +

1
2
Q̄

)
ε−

+2(Z − Z̄)W dFε− . (79)

If Z is real the solution for ε− is given by (78) while ε+
reads:

ε+ = − iσ

2
√

2
exp

[
1
2
(Q̄− iFπ)

]
u√|X++| ε̃ (80)

In the general case a closed analytic expression cannot be
obtained. Again all solutions respect half of the supersym-
metries.

As a result of this section it follows that any bosonic
field configuration with C = 0 locally is BPS. At the same
time it should be realized that this need not be true glob-
ally. Indeed, global solutions in the general case are ob-
tained by a combination of several patches, which may
destroy the BPS property at the global level (cf. [34]).
Finally we mention the agreement of these calculations
with general statements on supersymmetric black hole

solutions [35–37]: all supersymmetric black holes are ex-
tremal. In our calculations this immediately follows from
the Killing norm for C = 0 [25,27]

K(X) = −2e(Q+Q̄)/2W =
1
4

∣∣eQ̄u
∣∣2 . (81)

Obviously all zeros are of even degree.

7 Conclusions

The present work on N = (2, 2) supergravity in two di-
mensions extends our previous one [9] by providing for
the first time the full classical solutions, including the
complete fermionic parts. This is possible thanks to the
powerful tool of the equivalent formulation as a particu-
lar class of graded Poisson Sigma models. Although the
actual computation is restricted to the chiral case, the
twisted chiral N = (2, 2) theories, as well as the ungauged
version can be obtained by simple redefinitions in the for-
mulas presented here. The classification of the solutions is
determined by the values of the Casimir functions in which
the interplay between body and soul characterizes differ-
ent cases. Although we draw heavily from our experience
with the N = (1, 1) case [4, 6], the present results exhibit
new interesting structures due to the larger fermionic sym-
metry algebra.

As yet another application of research directions which
are possible in the framework of gPSMs we discuss solu-
tions retaining certain supersymmetries (BPS states), al-
though in N = (2, 2) supergravity the analysis turns out
to be rather more involved than the one in N = (1, 1).
Therefore, only bosonic solutions are treated here.

Comparing with other results, already obtained for
N = (1, 1) it is clear that beside a more comprehensive
discussion of BPS states in analogy to [25], also the prob-
lem of putting a (super) point particle into an N = (2, 2)
background (cf. [6] for N = (1, 1)), the coupling of super-
symmetric matter (cf. [25]) as well as the quantization of
N = (2, 2) supergravity (cf. [23,24]) are topics expected to
allow a successful treatment in further work. This will al-
low new insights also for application in superstring theory
where the gPSM approach now seems to provide a new
line of attack for the solution of some old problems.
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Appendix A: Notations and conventions

The conventions are identical to [4, 28], where additional
explanations can be found.
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Indices chosen from the Latin alphabet are generic (up-
per case) or (lower case) refer to commuting objects, Greek
indices are anti-commuting ones. Holonomic coordinates
are labeled by M , N , O etc., anholonomic ones by A, B, C
etc., whereas I, J , K etc. are general indices of the gPSM:

XI = (Xφ, Xπ, Xa, Xα, X ᾱ) = (φ, π,Xa, χα, χ̄α) (A.1)

AI = (Aφ, Aπ, Aa, Aα, Aᾱ) = (ω,B, ea, ψα, ψ̄α) (A.2)

The summation convention is always NW → SE, e.g.
for a fermion χ: χ2 = χαχα. Our conventions are arranged
in such a way that almost every bosonic expression is
transformed trivially to the graded case when using this
summation convention and replacing commuting indices
by general ones. This is possible together with exterior
derivatives acting from the right, only. Thus the graded
Leibniz rule is given by

d (AB) = AdB + (−1)B (dA)B . (A.3)

In terms of anholonomic indices the metric and the
symplectic 2 × 2 tensor are defined as

ηab =

(
1 0
0 −1

)
, (A.4)

εab = −εab =

(
0 1

−1 0

)
, εαβ = εαβ =

(
0 1

−1 0

)
.

(A.5)

The metric in terms of holonomic indices is obtained by
gmn = eb

ne
a
mηab and for the determinant the standard ex-

pression e = det ea
m =

√− det gmn is used. The volume
form reads ε = 1

2ε
abeb ∧ ea; by definition ∗ε = 1.

The γ-matrices are used in a chiral representation:

γ0
α

β
=

(
0 1
1 0

)
γ1

α
β

=

(
0 1

−1 0

)
(A.6)

γ∗α
β = (γ1γ0)α

β
=

(
1 0
0 −1

)
(A.7)

Covariant derivatives of anholonomic indices with re-
spect to the geometric variables ea = dxmeam and ψα =
dxmψαm include the two-dimensional spin-connection one
form ωab = ωεab. When acting on lower indices the explicit
expressions read ( 1

2γ∗ is the generator of Lorentz transfor-
mations in spinor space):

(De)a = d ea + ωεa
beb (Dψ)α = dψα − 1

2
ωγ∗α

βψβ

(A.8)

Dirac conjugation is defined as χ̄α = χ†γ0. Written in
components of the chiral representation

χα = (χ+, χ−) , χα =

(
χ+

χ−

)
(A.9)

the relation between upper and lower indices becomes
χ+ = χ−, χ− = −χ+. Dirac conjugation follows as
χ̄− = χ∗

−, χ̄+ = −χ∗
+, i.e. for Majorana spinors χ− is

real while χ+ is imaginary.
For two gauge-covariant Dirac spinors χα and λα the

combinations

χλ , χγ∗λ , χ̄γaλ (A.10)

and their hermitian conjugates are gauge invariant for chi-
ral gaugings, while

χ̄λ , χ̄γ∗λ , χ̄γaλ (A.11)

are invariant for twisted-chiral gaugings. Note that in the
latter case the gravitino ψα transforms under gauge trans-
formations as χ̄α. Thus in (A.11) the bilinear invariants
of a gravitino and a dilatino are obtained by substituting
λ → ψ̄.

Vectors in light-cone coordinates are given by

v++ =
i√
2
(v0 + v1) , v−− =

−i√
2
(v0 − v1) . (A.12)

The additional factor i in (A.12) permits a direct iden-
tification of the light-cone components with the compo-
nents of the spin-tensor vαβ = i√

2
vcγαβ

c . This implies that
η++|−− = 1 and ε−−|++ = −ε++|−− = 1. The γ-matrices
in light-cone coordinates become

(γ++)α
β =

√
2i

(
0 1
0 0

)
, (γ−−)α

β = −
√

2i

(
0 0
1 0

)
.

(A.13)
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